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In biochemistry, the protein structure prediction from the primary sequence is a significant issue. Few
research works are intended for performing protein structure prediction with assist of diverse data min-
ing techniques. However, the existing technique does not provide enhanced performance for protein
structure prediction. To resolve this limitation, Weighted Pearson Correlation based Improved Random
Forest Classification (WPC-IRFC) Technique is introduced. The WPC-IRFC Technique is developed for
enhancing the protein structure prediction performance with higher accuracy and lesser time. The
WPC-IRFC uses Weighted Pearson Correlation (WPC) to select relevant amino acid features based on
weighted mean and weighted covariance. After selecting the relevant amino acid features, WPC-IRFC
Technique designs an Improved Random Forest Classification (IRFC) for predicting the protein structure
from a big protein dataset (DS). IRFC significantly lessens the error rate of classification with aid of iter-
atively reweighted least squares model to accurately identify protein structures.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Protein Structure Prediction is a procedure for identifying the
three dimensional structure of protein from amino acid sequence.
Proteins are huge biological molecules that comprise the great
amount of amino acid sequence. The prediction of protein struc-
ture plays an imperative role in biology for the development of
new drug. In Bioinformatics and molecular biology, finding the
protein structure from the amino acid sequence has become a
demanding issue. Many research works are designed for protein
structure prediction using various data mining techniques. The
prediction accuracy of existing techniques was not adequate.
Therefore, WPC-IRFC Technique is developed.

A novel technique called ProtNNwas designed in [1] for fast and
accurate protein 3D-structure classification. The accuracy of pro-
tein structure prediction was lessened. An enhanced GA frame-
work (GAPlus) was employed in [2] for Ab Initio Protein
Structure identification. The FPR of GAPlus was higher.

Bacterial Foraging Optimization (BFO) algorithm was intro-
duced in [3] for protein structure discovery and thereby reducing
the free energy level. The time complexity of BFO was very higher.
A Memetic Algorithm (MA) was applied in [4] for protein structure
discovery. But, the FPR was minimal.

Machine learning classification model was presented in [5] with
aid of six physical and chemical properties to identify the structure
of the protein. The precision and recall of this model was not ade-
quate. A neural networks and support vector machine were
employed in [6] to execute protein structure identification process.

Genetic Algorithm was applied in [7] for finding the protein
structure on a large scale. However, the amount of time taken for
protein structure prediction was higher. Machine Learning Tech-
niques was exploited in [8] to increase performance of multi-
class protein structure prediction. The misclassification error was
not solved.

In [9], three distance based classifiers was introduced to resolve
the secondary structure prediction issues. With the assist of esti-
mation of distribution algorithm, A novel method was designed
in [10] for accomplishing fragment-based protein structure predic-
tion. The computational complexity of structure prediction was
remained open issue.

A combinatorial fusion technique was intended in [11] for fea-
ture selection and protein structure classification. Through cas-
caded bidirectional recurrent neural network (BRNN), a novel
prediction system was introduced in [12] for protein secondary
structure. The ratio of number of faulty prediction was higher.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2020.107885&domain=pdf
https://doi.org/10.1016/j.measurement.2020.107885
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Automatic classification of protein structure was introduced in
[13] with help of physicochemical constraints. Two multi-
classification strategies applied in [14] to discover protein struc-
tural classes according to autocovariance. The protein structure
predication time was higher.
Big Protein Dataset 
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2. Related works

In [15], a review of different techniques was analyzed for pro-
tein secondary structure identification. Deep Convolutional Neural
Fields was developed in [16] to find protein structure and their
properties, for example, contact number, disorder regions, and sol-
vent accessibility. Enhanced k-means clustering algorithms were
constructed in [17] for finding high-quality protein structural
models.

An Artificial Neural Network Classifier was presented in [18] for
detection of protein structural classes. For identification of protein
structure, a Distributed Tree-based Ensemble Learning Approach
was designed in [19]. Protein Structural Class Prediction was exe-
cuted in [20] with assist of k-separated bigrams and position-
specific scoring matrix. NMR spectra analysis was presented in
[21] for automated structure identification of proteins.

Sparse Representation based Classification (SRC) technique was
introduced in [22] for predicting protein fold using chosen relevant
features. A segmented-based feature extraction method was
designed in [23] for determining the secondary structure of pro-
teins. A novel technique was designed in [24] for identifying the
three-dimensional shape of large proteins. In [25], a survey of
diverse machine learning methods introduced for Protein Structure
Prediction.

To conquer the existing issues, WPC-IRFC technique is designed.
The contributions of WPC-IRFC technique is explained as follows,

� To improve protein structure prediction performance with les-
ser time as compared to conventional works, WPC-IRFC tech-
nique is introduced by combining the WPC and IRFC.

� To enhance the feature selection performance of protein struc-
ture prediction with minimal time as compared to conventional
works, WPC is applied in WPC-IRFC technique. The WPC esti-
mates the statistical correlation among two amino acid features
according to weighted mean and weighted covariance and
thereby choose only a more significant amino acid features for
identifying protein structures.

� To achieve higher classification accuracy and minimal time for
protein structure prediction as compared to traditional works,
IRFC is proposed in WPC-IRFC technique. The IRFC finds the
majority vote of ‘n’decision tree classifiers and evade the mis-
classification of protein structure prediction using iteratively
reweighted least squares model.

The residual structure of the article is formulated as follows; the
related works are depicted in Section 2. The WPC-IRFC technique is
described in Section 3 with the architecture diagram. Experimental
settings are presented in Section 4 and result analysis is exposed in
Section 5. Section 6 provides the conclusion of the article.
Efficient Identification of 
Protein Structures 

Fig. 1. WPC-IRFC Technique for Protein Structure Prediction.
3. Weighted pearson correlation based improved random forest
classification technique

In bioinformatics and theoretical chemistry, the prediction of
protein structure is an imperative process. Since, the prediction
of Protein structure is a highly crucial process in medicine (for
instance, drug design) and biotechnology. In existing, a lot of
research works are designed for finding the protein structure with
the application of different classification techniques. But, the per-
formance of existing classification techniques was poor. Toresolve
these limitations; WPC-IRFC Technique is developed. The WPC-
IRFC technique is designed with application of WPC and IRFC.

On the contrary to traditional techniques, WPC is applied in
WPC-IRFC technique for effective feature selection assist computes
weighted mean and weighted covariance with intentions of choos-
ing the relevant amino acid features with minimal time. In addition
to that, IRFC is used in WPC-IRFC technique on the contrary to con-
ventional techniques too btain higher classification performance
for protein structure detection. The IRFC applied in WPC-IRFC tech-
nique decreases the error rate of classification for accurately per-
forming protein structure prediction. Thus, WPC-IRFC technique
obtains better results in terms of TPR, FPR, PSPA and PSPT as com-
pared to the conventional works.

The overall process of WPC-IRFC technique is portrayed in Fig. 1
for protein structure prediction with greater accuracy and minimal
time. As presented in above Fig. 1, WPC-IRFC technique applied
two algorithms in order to achieve higher protein structure detec-
tion performance. The WPC-IRFC technique initially selects the rel-
evant amino acid features from big protein DS with the application
of WPC. Then, the WPC-IRFC technique identifies protein structure
with the application of IRFC. This assists for WPC-IRFC technique to
improve the protein structure prediction performance and lessen
the time for early diagnosis of disease. The exhaustive processes
of WPC-IRFC technique are shown in below subsections.
3.1. Weighted Pearson Correlation-based feature selection

The WPC-IRFC Technique exploits WPC with aiming at selecting
the relevant amino acid features for protein structure identifica-
tion. WPC is utilized inWPC-IRFC Technique to improve the feature
selection performance for accurate protein structure prediction
and improving disease diagnosis efficiency. The WPC determines
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the statistical correlation, or association, among two amino acid
features based on weighted mean and weighted covariance on
the contrary to existing Pearson correlation. Therefore, WPC is
the best method for selecting relevant amino acid features. With
the support of determined degree of correlation, then WPC choose
the relevant amino acid features and thereby enhance PSPA. AWPC
is a number between �1 and 1 that represents the extent to which
two amino acid features are linearly related.

The flow process of WPC is presented in Fig. 2 to carry out fea-
ture selection processes. As exposed in the below figure, at first
WPC computes weighted mean and weighted covariance between
the dependent variable (i.e. disease) and one or more independent
variables (i.e. amino acid features).

With help of measured weighted mean and weighted covari-
ance, then WPC evaluates the correlation among amino acid fea-
tures in input big protein DS. WPC verifies correlation value is 0
to +1.00. If the above condition is true, then WPC chooses the
amino acid feature for protein structure prediction. Otherwise,
the amino acid feature is not selected. Therefore, WPC-IRFC Tech-
nique attains better results in TPR and FPR for feature selection
with minimal time and error rate for effectual protein structure
detection.

Let us consider a big protein DS represented as ‘DS ¼ F1; F2; ::Fn’
with a number of amino acid features ‘Fi’. The WPC measures the
weighted mean using below expression,

m Fi;wð Þ ¼
P

iwiFiP
iwi

ð1Þ
Fig. 2. Flow Processes of WP
From Eq. (1), ‘Fi’ represent amino acid feature in the input big
protein DS in which ‘wi’ indicates the weight vector. By using the
above equation, WPC estimates weighted mean between the
amino acid feature and disease to find relevant amino acid feature
for predicting protein structure. Consequently, WPC determines
weighted covariance using below formulation,
cov Fi; x;wð Þ ¼
P

iwi Fi �m Fi;wð Þð Þ x�m Fi;wð Þð ÞP
iwi

ð2Þ

From Eq. (2), ‘Fi’ denotes amino acid feature in the DS and ‘wi’ is
a weight vector and ‘x’symbolizes corresponding disease. With
assist of above equation, WPC determines weighted covariance
between the amino acid feature and disease to discover relevant
amino acid feature for finding protein structure. Followed by,
WPC estimates correlation coefficient value ‘Cr’ using below math-
ematical representation,
Cr Fi; x;wð Þ ¼ cov Fi; x;wð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov Fi; Fi;wð Þcov y; y;wð Þp ð3Þ

From Eq. (3), results of correlation value ‘Cr’ is ranges from
�1.00 to +1.00. With the estimated correlation value ‘Cr’, WPC effi-
ciently performs the feature selection processes with higher TPRs.
The algorithmic steps of WPC are shown in below.
C for Feature Selection.
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Algorithm 1 (Weighted Pearson Correlation-Based Feature Selection
Algorithm).
//Weighted Pearson Correlation-Based Feature Selection
Algorithm

Input: Big Protein Dataset ‘DS’, Number of amino acid features
‘Fi ¼ F1; F2; ::Fn’,

Output: Relevant amino acid features
Step 1: Begin
Step 2: For each amino acid features ‘Fi’
Step 3:Measure weighted mean using (1)
Step 4: Measure weighted covariance using (2)
Step 5: Determine the correlation coefficient ‘Cr’ using (3)
Step 6: If(correlation value ‘Cr value is 0 to +1.00), then
Step 7: Choose Amino Acid Feature
Step 8: else
Step 9: Amino Acid Feature is not selected
Step 10: Endif
Step 11: End for
Step 12: End

The algorithmic process of WPC is explained in algorithm 1 for
selecting the relevant amino acid features with minimal time. With
the help of chosen optimal amino acid features, proposed tech-
nique effectively find outs the protein structure. Therefore, WPC-
IRFC technique enhances the TPR and minimizes FPR, time of fea-
ture selection when compared to existing techniques.
3.2. Improved random forest classification

After selecting the relevant amino acid features, the WPC-IRFC
Technique identifies the protein structureusing IRFC. In bioinfor-
Fig. 3. Flow Process of IRFC for P
matics, the protein structures classification is necessary for their
function determination and performs disease diagnosis. The exist-
ing random forests classifier takes more time and also affords mis-
classifications result. In order to solve these limitations, IRFC is
developed. On the contrary to existing random forest classifier,
iteratively reweighted least squares model is employed in IRFC.
The iteratively reweighted least squares model lessens the misclas-
sification error to enhance the classification accuracy for protein
structure prediction as compared to conventional works. IRFC is
a supervised learning algorithm. IRFC is an ensemble of Decision
Trees and trained with ‘‘bagging” method. Bagging method
enhances the overall result. To acquire accurate and stable predic-
tion, IRFC constructs multiple decision trees and combines them.
One big advantage of IRFC is that it exploited for both classification
and regression issues. The IRFC builds ‘n’ number of decision trees
and subsequently applies voting scheme. Then, the majority votes
of decision trees are determined to effectively find out the protein
structure for disease diagnosis. The processes involved in IRFC are
presented in below.

Fig. 3 depicts the block diagram of IRFC to attain higher classi-
fication accuracy for protein structure identification with minimal
time. From the above figure, IRFC fits ‘n’ number of decision tree
classifiers to select relevant amino acid features from protein DS
and enhance the predictive accuracy and control over-fitting. After
that, IRFC combines all the outputs from the individual decision
tree through the application of voting scheme and discovers major-
ity votes of classification. Subsequently, IRFC optimizes the error
rate of classification with application of iteratively reweighted
least squares model to accurately finding protein structure. This
assists for WPC-IRFC Technique to enhance the PSPA with lesser
time as compared to conventional works.

On the contrary to existing random forest classifier, decision
tree is exploited in IRFC that uses linear regression model for pre-
dicting protein structures. Every internal node in tree represents
rotein Structure Prediction.
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test on training samples. A leaf node contains the different
classes and affords prediction results of protein structures.
Linear regression model utilized in decision tree estimates
relationship between a selected relevant amino acid features
using linear predictor functions to find protein structures. From
that, the decision tree classification is performed using below
expression

f DT1ð Þ ¼ b0 þ b1F1 þ � � � � � � þ bnFn ð4Þ
From Eq. (4),’b0; � � � ::; bn’ represents the linear regression coeffi-

cients that assist for decision tree classifier to measure the rela-
tionship between the selected relevant amino acid
features‘Fi ¼ F1; F2; ::Fn’ and thereby predicts the protein struc-
tures. Then, IRFC combines the result of all ‘n’ decision trees using
below formulation,

c ¼ f DT1ð Þ þ f DT2ð Þ þ � � � þ f DTnð Þ ð5Þ
From Eq. (5), ‘f DTið Þ’represent that result of decision tree

classifier. Followed by, IRFC applies voting scheme for build ‘n’
number of decision tree classifiers using below mathematical
expression,

c ¼ # f DT1ð Þ þ f DT2ð Þ þ � � � þ f DTnð Þf g ð6Þ
From Eq. (6), ‘#’indicates a vote applied for results of decision

tree classifier. Subsequently, IRFC finds majority votes of ‘n’ num-
ber of decision tree classifiers using below mathematical
representation,

c ¼ argmax
n

#f DTið Þ Where 0i 2 1 to n0 ð7Þ

From Eq. (7), ‘c’refers to a classification output with majority
votes. Here, the arg max function is exploited to identify majority
votes of ‘n’ number of decision tree classifiers. During the classifi-
cation process of protein structure prediction, IRFC lessens error
rate with aid of iteratively reweighted least squares model on
the contrary to conventional random forest classification. The IRFC
estimates the error rate as differences among actual output and
predicted output. Accordingly, error rate ‘ei’ of classification is
computed as,

ei ¼
Xn
i¼1

ci � po ð8Þ

From Eq. (8), ‘c’ refers to the actual output in which ‘po’ repre-
sents the predicted classification output. After computing the error
rate, IRFC applied iteratively reweighted least squares model that
is employed in the proposed technique to solve misclassification
problems with help of objective functions. Here, objective function
is to optimize the error rate of protein structure classification to get
improved prediction accuracy as compared to conventional works.
The IRFC lessens the error rate of protein structure classification by
using iteratively reweighted least squares model which is mathe-
matically formulated as,

bc ¼ argmin
Xn
i¼1

ci � po ð9Þ

From Eq. (9), IRFC increases performance of classification that
effectively predicts the protein structures with minimal time.
Then,‘bc’ is a final classification output for protein structure identi-
fication. The IRFC algorithm is presented to enhance classification
performance of protein structure identification for disease diagno-
sis which is illustrated in below.
Algorithm 2 (Improved Random Forest Classification).

//Improved Random Forest Classification Algorithm

Input: Relevant amino acid features
Output: improved protein structure prediction accuracy

minimum time
Step 1: Begin
Step 2: For selected relevant amino acid features
Step 3: Create ‘n’number of a decision tree using (4)
Step 4: Combines result of all ‘n’ decision trees using (5)
Step 5: Apply voting scheme using (6)
Step 6: Find the majority votes of classification using (7)
Step 7: Measure the error rate using (8)
Step 8: Optimize classification error and accurately predicts

protein structure using (9)
Step 9: End For
Step 10: End

From above algorithmic steps, IRFC takes the relevant amino
acid features as input. At first, IRFC trains selected relevant amino
acid features with decision tree classifier. To choose relevant
amino acid features, IRFC formulates the ‘n’ number of decision
tree classifiers. Then, IRFC combined the output of all‘n’decision
tree classifiers and applies voting scheme. After that, IRFC finds
the majority vote of ‘n’decision tree classifiers. During the classifi-
cation, the error rate is estimated for avoiding the misclassification
of protein structure prediction using iteratively reweighted least
squares model. From that, IRFC significantly executes protein
structure prediction with a minimal amount of time consumption.
Thus, the WPC-IRFC Technique improves the PSPA with minimal
PSPT as compared to conventional works.
4. Experimental settings

The performance of WPC-IRFC Technique is evaluated in Java
Language with two big protein DSs namely VariBench and Protein
Data Bank (PDB). The VariBench DS is obtained from http://struc-
ture.bmc.lu.se/VariBench/datasets.php. Besides, The PDB DS
includes data about the nucleic acid and 3D protein shapes which
employed to discover sequences of proteins for disease diagnosis.
The PDB DS is taken from https://www.rcsb.org/pdb/home/home.
do. The above said two DS comprises information such as Atom
serial number, Atom name, Residue name, Chain identifier, Residue
sequence number, Code for insertion of residues, etc. For conduct-
ing the experimental evaluation, WPC-IRFC Technique employs the
dissimilar number of amino acid features in the range of 50–500
from above two DSs. Furthermore, VariBench and PDB are crystal-
lographic databases that contain enormous numbers of biological
molecules, such as proteins and nucleic acids.

The result of WPC-IRFC Technique is calculated in TPR, FPR,
PSPA and PSPT. The performance result of WPC-IRFC Technique is
compared with four existing methods namely, ProtNN [1],
enhanced GA framework (GAPlus) [2], Bacterial Foraging Optimiza-
tion (BFO) algorithm [3] and Memetic Algorithm (MA) [4].

5. Result and discussions

In this section, the WPC-IRFC Technique results are compared
with four existing methods namely [1,2,3] and [4]. The effective-
ness of WPC-IRFC Technique is estimated with following metrics
namely TPR, FPR, PSPA and PSPT with the assist of tables and
graphs.

http://structure.bmc.lu.se/VariBench/datasets.php
http://structure.bmc.lu.se/VariBench/datasets.php
https://www.rcsb.org/pdb/home/home.do
https://www.rcsb.org/pdb/home/home.do
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5.1. Experimental result of true positive rate

True Positive Rate ‘(TPR)’is calculated as the ratio of number of
amino acid features which are correctly selected as relevant to the
total number of features. TPR is calculated in percentage (%) and
obtained using below mathematical formulation,

TPR ¼ No: of features correclty selected
Total No: of features

� 100 ð10Þ

From Eq. (10), TPR of feature selection is estimated for protein
structure prediction. Greater TPR, more efficient the technique is
said to be.

WPC-IRFC Technique is executed in Java Language to evaluate
the TPR during the feature selection process with number of amino
acid features ranges from 50 to 500. The TPR results of WPC-IRFC
Technique are compared with existing methods [1–3] and [4] to
estimate theWPC-IRFC Technique performance for identifying pro-
tein structures from big protein DS. When conducting an experi-
mental work using 50–500 amino acid features from VariBench
DS, WPC-IRFC Technique achieves 93% TPR whereas existing [1–
3] and [4] obtains 78%, 80%, 83%, and 86%. Therefore, the TPR of
WPC-IRFC Technique is higher than the conventional methods.
Table 1 illustrates the results analysis of TPR with two DSs (see
Table 2).
Table 1
Tabulation for true positive rate.

Datasets Name True Positive Rate (%)

ProtNN GAPlus BFO MA WPC-IRFC

VariBench Data set 78 80 83 86 93
PDB dataset 80 80.5 84 87 95

Table 2
Tabulation for protein structure prediction accuracy.

Datasets Name Protein Structure Prediction Accuracy (%)

ProtNN GA Plus BFO MA WPC-IRFC

VariBench Data set 75 78 81 84 90
PDB dataset 77 81 84 87 96

Fig. 4. Comparative Results of True P
Fig. 4presents the impacts of TPR using five methods namely
ProtNN [1], GAPlus [2], BFO [3] and MA [4] and WPC-IRFC Tech-
nique and two DS such as VariBench and PDB DS. As exposed in
Fig. 4, the proposed WPC-IRFC Technique provides higher TPR
when using both big protein DS for obtaining improved protein
structures prediction performance when compared to four existing
ProtNN [1], GAPlus [2], BFO [3] and MA [4]. This is because of the
utilization of WPC in WPC-IRFC Technique on the contrary to con-
ventional works. The WPC utilized in the proposed technique
determines the weighted mean and weighted covariance between
amino acid features in order to significantly estimate correlation
value. The measured correlation value assists for WPC-IRFC Tech-
nique to choose amino acid features that are more important for
protein structure identification. This supports for IRFC Technique
improve the number of amino acid features correctly selected as
compared to conventional works. Therefore, WPC-IRFC Technique
enhances the TPR of feature selection as compared to conventional
works.

5.2. Experimental result of protein structure prediction accuracy

PSPA is defined as the ratio of number of protein structures
which are correctly predicted with selected relevant amino acid
features to total number of protein structures. PSPA estimated in
percentages (%).

PSPA ¼ number of protein structures correctly predicted
total number of protein structures

� 100
ð11Þ

From Eq. (11), the accuracy of Protein structure detection is
evaluated. Higher PSPA, more effective the method is said to be.

WPC-IRFC Technique is implemented in Java Language to deter-
mine the PSPA with number of amino acid features ranges from 50
to 500. The PSPA result of WPC-IRFC is compared with existing
methods to find the performance of WPC-IRFC Technique for clas-
sifying protein structures from big protein DS. When accomplish-
ing an experimental process using 50–500 amino acid features
from PDB DS, WPC-IRFC Technique attains 96% PSPA whereas
existing ProtNN [1], GAPlus [2], BFO [3] and MA [4] gets 77%,
81%, 84%, and 87%. From that, the WPC-IRFC Technique provides
higher PSPA as compared to existing methods. The result analysis
of PSPA with two DS is depicted in below.
ositive Rate using Two Dataset.



Fig. 5. Comparative Results of Protein Structure Identification Accuracy using Two Dataset.

Table 3
Tabulation for false positive rate.

Datasets Name False Positive Rate (%)

ProtNN GAPlus BFO MA WPC-IRFC

VariBench Data set 22 20 17 14 7
PDB dataset 27 19 16 13 5
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Fig. 5 demonstrates the impacts of PSPA using five methods
namely ProtNN [1], GAPlus [2], BFO [3] and MA [4] and WPC-
IRFC Technique and two DSs such as VariBench and PDB DS. As
depicted in Fig. 5, the proposedWPC-IRFC Technique affords higher
PSPA using both big protein DS for improving disease diagnosis
performance ewhen compared to four existing ProtNN [1], GAPlus
[2], BFO [3] and MA [4]. This is due to the utilization of WPC and
IRFC in WPC-IRFC Technique on the contrary to conventional
works. In WPC-IRFC Technique, the algorithmic processes of WPC
assist to pick the amino acid features for protein structure predic-
tion. Further, the algorithmic processes of IRFC help for WPC-IRFC
Technique to avoid the misclassification error of protein structure
detection. Hence, WPC-IRFC Technique improves the number of
protein structures which are correctly predicted with relevant
amino acid features as compared to conventional works. Therefore,
IRFC Technique attains greater PSPA than the existing works.

5.3. Experimental result of False Positive rate

False Positive Rate ‘(FPR)’ is calculated as the ratio of number of
amino acid features which are incorrectly selected as relevant to
total number of features taken as input. FPR is measured in per-
centage (%) and formalized as below,

FPR ¼ No: of features incorreclty selected
Total No: of features

� 100 ð12Þ

From Eq. (12), the FPR of feature selection is measured for pro-
tein structure identification. Lesser the FPR, more effective the
technique is said to be.

WPC-IRFC Technique is implemented in Java Language to eval-
uate the FPR of feature selection with number of amino acid fea-
tures ranges from 50 to 500. The result of FPR using WPC-IRFC
Technique is compared with existing methods [1–3] and [4] to esti-
mate the performance of WPC-IRFC Technique for protein struc-
tures identification for disease diagnosis. When performing an
experimental evaluation with 50–500 amino acid features from
VariBench DS, WPC-IRFC Technique obtains 7% FPR whereas exist-
ing [1–3] and [4] gets 22%, 20%, 17%, and 14%. Hence, the FPR of
WPC-IRFC Technique is lower than the existing methods. Table 3
depicts the result analysis of FPR with two DSs.
The impact of FPR is portrayed in Fig. 6 using five methods
namely existing [1–3] and [4] and WPC-IRFC Technique and two
DSs such as VariBench and PDB DS. As illustrated in Fig. 6, the pro-
posed WPC-IRFC Technique provides lower FPR when using both
big protein DS for effective protein structures predictions when
compared to four existing ProtNN [1], GAPlus [2], BFO [3] and
MA [4]. This is because of the utilization of WPC in WPC-IRFC Tech-
nique. With the WPC process, WPC-IRFC Technique measures the
correlation between amino acid features in input big protein DS.
After that, WPC-IRFC Technique checks if a correlation value is 0
to +1.00. If it is true, then WPC-IRFC Technique selects the amino
acid feature for discovering protein structures. Otherwise, the
amino acid feature is not elected. From that, WPC-IRFC Technique
reduces the ratio of a number of protein structures that are
wrongly predicted. Therefore, the WPC-IRFC Technique attains les-
ser FPR as compared to conventional works.
5.4. Experimental result of protein structure prediction time

In WPC-IRFC Technique, Protein structure prediction time‘
(PSPT)’measures the amount of time taken to identify the protein
structures from a big protein DS. PSPT is calculated in milliseconds
(ms) and formalized as follows,

PSPT ¼ N � time predicting protein structureð Þ ð13Þ
From (13), the amount of time required for protein structure

identification is calculated. Here,‘N’ indicates the number of pro-
tein structures. Minimal PSPT, more efficient the technique is said
to be.

WPC-IRFC Technique is implemented in Java Language for esti-
mating the PSPT with number of amino acid features ranges from
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50 to 500. PSPT result of WPC-IRFC Technique is compared with
existing [1–3] and [4] to find performance of WPC-IRFC Technique
for efficient disease diagnosis. When implementing an experimen-
tal process by 50–500 amino acid features from PDB DS, WPC-IRFC
Technique takes13 ms time to predict protein structures whereas
conventional ProtNN [1], GAPlus [2], BFO [3] and MA [4] obtains
52 ms, 46 ms, 25 ms, and 26 ms respectively. From the results, it
is descriptive that PSPT using proposed WPC-IRFC is minimal as
Table 4
Tabulation for protein structure prediction time.

Datasets Name Protein Structure Prediction Time (ms)

ProtNN GAPlus BFO MA WPC-IRFC

VariBench Dataset 55 49 28 27 16
PDB dataset 52 46 25 26 13
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Fig. 7. Comparative Results of Protein Struct
compared to conventional methods. Table 4 portrays the experi-
mental result of FPR with two DSs.

Fig. 7 reveals the impacts of PSPT using five methods namely
ProtNN [1], GAPlus [2], BFO [3] and MA [4] and WPC-IRFC Tech-
nique and two DSs such as VariBench and PDB DS. As shown in
Fig. 7, the WPC-IRFC Technique takes minimal PSPT with two big
protein DS as compared to existing [1–3] and [4]. This is because
of the application of WPC and IRFC in WPC-IRFC Technique on
the contrary to conventional works. With the application of WPC,
WPC-IRFC Technique chooses the amino acid features that are
more relevant for identifying protein structure with the minimal
amount of time. In addition, with the application of IRFC, WPC-
IRFC Technique accurately predicts protein structures via selected
amino acid features with minimal PSPT. This assist for WPC-IRFC
Technique to lessen the PSPT than the existing works. Therefore,
WPC-IRFC Technique lessens the PSPT as compared to conven-
tional works.
PDB dataset
e

ProtNN

GAPlus

BFO

ure Prediction Time using Two Dataset.
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6. Conclusion

An efficient WPC-IRFC Technique is introduced for enhancing
the protein structure prediction performance with higher accuracy
and minimal time. The WPC-IRFC Technique is designed with
application of WPC and IRFC. The WPC supports for WPC-IRFC
Technique to enhance the ratio of number of correctly selected
amino acids features and also to minimize the time complexity
involved during feature selection process as compared to tradi-
tional techniques. Moreover, IRFC helps for WPC-IRFC Technique
to achieve higher classification performances for protein structure
identification with minimal amount of time consumption when
compared to existing techniques. WPC-IRFC Technique is tested
with the metrics namely TPR, FPR, PSPA, PSPT using two big protein
DS and compared with conventional works. The result analysis of
WPC-IRFC Technique offers better performance in terms of PSPA
and PSPT for efficient disease diagnosis as compared to state-of-
the-art works.
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